本實驗室已建立研究激素處理前、後對同一個體卵巢發育影響的方法 (Huang et al., 2020),其重要意義是:鰻魚不是被馴化 (domesticated) 的品系;因為發現野生斑馬魚比實驗室品系 (模式生物) 更加多樣化 (根據核苷酸多樣性、雜合性和等位基因頻譜),所以實驗室品系可能僅代表物種中遺傳多樣性的一小部分 (Suurvali et al., 2019)。鰻魚處理前的卵巢作可為形態或分子的基礎或基線來比較處理後的卵巢,個體可追溯性可研究個體差異和處理結果的關係,可部分解決「重複組實驗的資源限制」。
雄性素可刺激鰻魚初級卵巢的發育,雖然野生鰻魚具顯著的個體變異,但雄性素是無變異性而可量化的,減少ㄧ個重要變異的影響。一般以卵細胞的大小(卵徑)分佈來估計卵巢發育狀態,卵徑的分佈以直方圖表示,直方圖是一種描述方法
(Ijiri et al., 1998),而我們用核密度估計(kernel
density estimation,KDE)來評估卵巢發育狀態,KDE可以表現卵巢發育的微小差異,因其是以單個卵的卵徑機率分佈所累積的;在顯微鏡下測量卵徑是不精確的,因為許多因子會導致卵徑的偏差:卵細胞可能因取樣過程和組織固定而變形、卵不是正圓形、卵徑劃分是隨意的等等,但 KDE 可以改善這些缺點, 可較完整的呈現 「成熟狀態」 (Huang et al.,
2020)。
卵細胞的活化和卵巢發育是複雜的,無數的因子和複雜的基因相互作用以控制卵巢發育
(Hsueh et al., 2018; Kallen et al., 2018; Zhang et al., 2018)。我們使用轉錄組,探究起始卵巢基因表達圖譜 (gene expression patterns) 與雄性素對鰻魚卵細胞發育的刺激結果之間的關係。在硬骨魚中,對早期卵細胞發育的轉錄組分析不多
(Zhu et al., 2018)。在日本鰻魚中,已有使用鮭魚垂體提取物處理的鰻魚,對其卵巢轉錄組影響的報告
(Lee et al., 2017),但實驗組與控制組來自不同個體,暗示著有著很大的個體差異,因為鰻魚不是來自被馴化 (domesticated) 的品系。
將處理後的卵巢組織與起始的轉錄組進行比較,結果顯示:某些KEGG生化信號傳遞途徑被顯著的(p < 0.05)同時被上調與下調, 這矛盾的結果意味著基因網絡的複雜性。事實上,魚類有多套的核酸與眾多蛋白質異構物 (isoforms),似乎可解釋這矛盾的原因。 基因集分析 (gene-set
analysis, GSA) 使用所有的表達基因(無截結值,no cut-off)而沒有先過濾數據(基於截結值, cut-off)以得到差異化表現基因(differential expression
gene,DEG)。 無截結結果表顯示大多數測序基因參與基本的生物調節和代謝功能。無論如何,顯著的代謝活動與卵巢狀態的變化是相對應的
(Huang et al., 2021a)。基因表現熱圖(gene
expression heatmap)的結果顯示: 外表型和基因型(基因表現程度)的正相關性 (Huang et al., 2021a)。
研究基因表達圖譜的差異,這些差異可以為選擇生物標誌提供基礎。為了使差異顯著最大化,截結條件設置為基因的表達值在起始卵巢組織中為零。我們嘗試過濾敏感組和不敏感組之間的差異,將差異放大。除了基本代謝途徑和細胞構造組成外,還有許多富集生物學信號傳遞路徑,其中涉及許多神經發育 (axon guidance 和axon regeneration) 或神經作用 (Neuroactive ligand-receptor interaction) 相關信號路徑,推測神經發生在鰻魚的初級卵巢發育中扮演相當的角色
(Huang et al., 2021b;Huang et al., (投稿中)) 。若以同一尾鰻魚中,將處理後的卵巢組織與起始的卵巢組織的轉錄組進行比較,以FC
(fold change = log2 (處理後KPTM+1) - log2 (處理前KPTM+1)) 呈現變化倍率,並進行降維與類聚(clustering),我們嘗試比較敏感組和不敏感組其FC的差異,發現Hippo 信號路徑也是被富集 (p < 0.001) 生物學信號傳遞路徑之一。
在脊椎動物(包含魚類)中,數種調控卵巢濾泡細胞發育的信號傳遞路徑已經被確定,例如:腺苷酸環化酶/cAMP/蛋白激酶A (PKA)和磷脂酶C(phospholipase C)/鈣/蛋白激酶C (PKC) 、Notch、Hedgehog 和Wnt 信號、TGF-B超家族成員、受體酪氨酸激酶
( RTKs) 和核內受體 (Hsueh et al., 2018; Kallen
et al., 2018; Zhang et al., 2018)。 Hippo信號路徑為新發現的細胞信號路徑
(Ma et al., 2019; Dey et al., 2020), Hippo信號路徑還與上述幾種信號傳遞路徑相互作用,它對脊椎動物卵巢的發育和類固醇生成有相當大的影響
(reviewed by Clark et al., 2022),但對魚類卵巢發育的影響並尚未被研究(NCBI PubMed:https://pubmed.ncbi.nlm.nih.gov)。
Hippo信號路徑也被稱為Salvador/ Warts /Hippo信號路徑,最初是在果蠅 (Drosophila
melanogaster) 中被發現 (Wu et al., 2003),後來的研究發現Hippo信號路徑也和果蠅卵巢發育有關。在演化上,Hippo信號路徑分子極為保守,Hippo信號路徑利用控制細胞增殖 (Halder and Johnson , 2011)和器官大小的調節
(Dong et al., 2007)。但在果蠅中的單一蛋白,在脊椎動物中卻是具有多種類似物(multiple homologs),這顯示在脊椎動物中Hippo信號路徑的複雜性
(Zhao et al., 2007)。在Hippo信號路徑的基礎由數個「負調節分子」組成蛋白激酶級聯(protein kinase cascade,圖1),
圖1.哺乳動物細胞中Hippo信號路徑的作用機制代表圖解 (from Clark et al., 2022)。
其中包括了由哺乳動物的serine/threonine-protein kinase 4 和 3 (通常稱為MST1/2) 與Salvador family WW
domain-containing protein 1 (SAV1) 形成的複合物。MST/SAV1複合體會磷酸活化大型腫瘤抑制子1和2 (LATS1/2) 及其調節蛋白Mps
one binder 1 (MOB1)。活化的LATS1/2複合物隨後磷酸化yes-associated protein 1 (YAP1)和WW
domain-containing transcription regulator 1 (WWTR1,也稱為TAZ),儘管 YAP 和 TAZ 具有相似的氨基酸序列 (~60%),但後者包含一個 WW 域,而 YAP 包含兩個。 除其他外,這一特徵強調了兩個分子之間也存在根本差異的事實 (Reggiani
et al., 2021),反映了不同的功能特性 (Plouffe et al., 2018); YAP1 和TAZ是Hippo信號路徑的主要效應子
(effectors) (Bae and Luo, 2018)。 Hippo 蛋白激酶級聯 (MST1/2, SAV, LATS1/2, MOB1) 動態的調控Hippo信號路徑YAP1和TAZ磷酸化 (Cho and
Jiang 2021;
Kwon
et al., 2021)。相反的,YAP1和TAZ磷酸化的比例提升促進它們與「14-3-3蛋白」的結合,而產生泛素媒介的分解 (Zhao B et al., 2007;Kim et al., 2018)。當Hippo信號不活化時,未磷酸化的YAP1和TAZ會積累在細胞核中,主要與TEA
domain (TEAD) 轉錄因子結合,促進參與細胞增殖和存活的基因表現 (Kim et al., 2018),TEAD家族有四個成員:TEAD1、TEAD2、TEAD3 和 TEAD4(Zhou
et al., 2016)。有趣的是:當無YAP1 或 TAZ
時,TEAD是與Vgll4 (vestigial-like
family transcription co-factors 4) 結合而抑制下游基因的轉錄 (Guo et al., 2013),但
Vgll3 反而是 TEAD 轉錄因子的輔助因子,可活化 Hippo 通路而刺激癌細胞增殖(Hori et al., 2020)。而在鮭魚遺傳學的研究,Vgll3 和TEAD3已分別被證明和性成熟或初次洄游體型有關 (Ayllon et al., 2015;Christensen et al.,
2017)。在非洲爪蟾,Vgll3 被證明和其三叉神經形成和顱神經嵴(CNC) 細胞遷移的重要調節者 (Simon et al., 2017)。
由於缺乏直接的DNA結合活性,YAP1和TAZ可與許多種的轉錄因子結合,包含:TEADS、TP73、ERBB4、EGR1、TBX5、SMADs和RUNXS,以調節目標基因的表現 (Chen et al., 2019);
YAP1和TAZ刺激與細胞增殖和遷移有關的基因轉錄 (例如: AREG, CTGF, Cyr61, FGF1, AXL, BMP4,
PD-L1 等等) (Varelas
, 2014)。
Hippo信號路徑和許多信號傳遞路徑互相作用 (reviewed
by Clark et al., 2022)。 Hippo信號路徑的調控由各種信號途徑刺激,許多蛋白激酶(protein kinase)直接或間接作用於此級聯。 Mitogen-activated
protein kinase kinase kinase kinase (MAP4K) 的作用是協調MST1/2和LATS1/2的活化,從而抑制YAP1和TAZ的活性
(Chen et al., 2019)。G蛋白偶聯受體 (GPCRs) 也可調節Hippo信號路徑, GPCRs活化蛋白激酶A (PKA) 來抑制YAP1和TAZ 的活性 (Meng
et al., 2016; Kim et al., 2013)。Hippo信號路徑可以被成長因子(如IGF1 、EGF) 所抑制,而增加YAP1的表現量 (Fan et al., 2013; Straßburger et al., 2012)。AMP-activated protein kinase (AMPK) 可以直接磷酸化YAP1
(Mo et al., 2012),此磷酸化會阻止YAP1和TEAD之間的互作用,而抑制YAP1所引起的基因轉錄。另一方面,許多其它的蛋白激酶,如PKA、cyclin-dependent kinase 1 (CDK1)、Jun
N-terminal kinases (JNK) 和Src family tyrosine kinases被證明了可以直接磷酸化YAP1和TAZ (Meng et al., 2016; Varelas et al.,
2014),這表明YAP1/TAZ也可以獨立於Hippo信號路徑。
新的研究顯示,在哺乳類卵巢中,Hippo信號路徑是卵巢生理和病理整體的調節因子,但其確切作用和伴隨的機制還尚不清楚,但已經證明了Hippo信號路徑成參與濾泡的活化和生長 (reviewed by Clark et
al., 2022)。在哺乳動物中,雖然一些調控Hippo信號路徑的關鍵分子機制已經被確定,但在生理或壓力情況下這些分子如何被調節仍有待研究。
到目前為止,對卵巢Hippo的研究大多數研究都集中在YAP1的功能上,YAP1刺激卵巢濾泡的發育,而Hippo路徑的失調可導致YAP1表現升高並導致卵巢和卵巢囊腫的增大 (Tsoi et al., 2019)。
YAP1被認為是一種卵巢癌的癌基因,編碼上游腫瘤抑制因子的基因經常被刪除、突變或下調,而編碼下游致癌蛋白的基因則經常被擴增或上調
(Hua et al., 2016; Cancer Genome Atlas Research Network, 2011)。
Hippo信號路徑的中斷導致YAP1 下游基因的表現,包括: 結締組織生長因子 (CTGF) 和細胞凋亡抑制基因家族成員(BIRC1) 的表現,而促進濾泡生長 (reviewed by Clark et
al., 2022)。在哺乳動物卵巢濾泡,從初級階段到排卵前階段,YAP1在濾泡顆粒細胞的細胞核終被發現 (Lv et al., 2019)。由於FSH是濾泡發育的主要驅動因素,
但實驗證據顯示:FSH對YAP1的影響可能與細胞分化而不是細胞生長有關
(Puri et al., 2016)。
目前對近端Hippo路徑成分MST1/2及其在卵巢中的轉接蛋白 (adaptor protein) SAV的作用瞭解有限。SAV1是MST1和MST2的核心結合夥伴,弱化 (knockdown) SAV1而弱化Hippo的活化,導致被活化的YAP1增加,同時FSHR、StAR和GDF9轉錄增加,及刺激濾泡顆粒細胞的增殖
(Lyu et al., 2016)。LATS1/2蛋白激酶位於MST1/2的下游,負責磷酸化Hippo效應子YAP1和TAZ。在小鼠,其小/中型濾泡顆粒細胞中,LATS1會與FOXL2 產生交互作用 (Pisarska et al., 2010),這種交互作用擴大了Hippo信號路徑的作用,因為FOXL2幾乎參與所有卵巢發育和功能 (Pannetier et al., 2016)。
活化的Hippo信號路徑導致YAP1和TAZ的磷酸化,導致轉錄協同調控因子 (transcripttional co-regulators) 被侷限在細胞質中。小鼠濾泡顆粒細胞特異性缺失YAP1 (Foxl2-Cre與Yap1fl/fl雜交),在Foxl2-Cre小鼠中,Yap1在濾泡形成和發育在非常早期就已缺失,破壞了濾泡的發育,導致卵巢變小,濾泡閉鎖增加
(Lv et al., 2019)。 在體外培養的小鼠卵巢中,病毒
(lentiviral) 敲弱Yap1的表現會抑制濾泡的生長,導致較多的原始濾泡和不多的初級濾泡,而Yap1的過表現則導致濾泡活化 (Hu et al., 2019)。在體外刺激PI3K信號路徑會導致非磷酸化 (活化)
的YAP1和濾泡活化的增加 (Devos et al,
2020)。很明顯的,Hippo信號路徑的活化會抑制卵巢濾泡顆粒細胞的生長,而Hippo路徑的抑制則會導致YAP1的活化和卵巢濾泡顆粒細胞的增殖以及隨後的濾泡生長,這些證據顯示Hippo信號路徑在濾泡發育和功能中有重要作用。
YAP1對卵巢濾泡顆粒細胞增殖和類固醇合成是必需的。睪固酮和雌二醇可刺激小鼠卵巢顆粒細胞中Yap1的表現和活化 (Liu et al., 2017)。睪固酮在處理後30分鐘內誘導YAP1從細胞質轉位到細胞核,24小時後則會再重分配回細胞質中。YAP1的siRNA處理使睪固酮刺激Yap1活化報告基因轉錄 (Yap1-activity reporter) 的能力被抑制,降低睪固酮所刺激的濾泡顆粒細胞增殖 (Park rt al., 2016)。在人類初級濾泡顆粒細胞,體外睪固酮與Yap1啟動子甲基化狀態呈負相關,睪固酮濃度的增加導致Yap1啟動子甲基化的降低 ( Jiang et al., 2017)。然而,在FSH或LH處理後,沒有觀察到Yap1啟動子的甲基化變化。雄性素可以提高人濾泡顆粒細胞中Yap1表現的結果,在小鼠濾泡顆粒細胞的研究也有相同的結論,所以睪固酮可以增強Yap1的表現和活性 (Ji et al., 2017)。可能是睪固酮濃度的升高導致了人類卵巢細胞中Yap1表現和活性的升高,為PCOS的發生和進程創造了環境。小鼠卵巢中抑制Yap1的表現,可降低血中雌二醇和FSH 的濃度,而過表現小鼠卵巢Yap1則產生了相反的結果 (Ye et al., 2017)。 將人絨毛膜促性腺激素
(hCG) 注射到青春期前的小鼠,增加了排卵前卵巢顆粒細胞細胞中磷酸化的MST1/2和磷酸化的YAP1,也降低細胞核內的YAP1 (Ji et al., 2017)。 顯示Hippo信號路徑可調節卵巢的內分泌功能。
雷帕黴素標的 (mTOR) 刺激合成代謝。mTOR信號路徑對濾泡活化、生長和分化以及排卵也很重要 (Papageorgiou et
al., 2021)。Hippo和mTOR在調節器官大小方面的作用由它們各自在控制細胞數量和細胞大小方面的功能而被確定
(Tumaneng et al., 2012),而PTEN也被證明可以活化Hippo信號途徑 (Xu et al., 2021),在鰻魚卵巢雄性素的刺激作用被證明和PTEN有關 (Huang et al., 2012)。YAP1可刺激IGF1和AREG (EGFR的配體) 的合成 (Xin et al., 2011),而活化mTOR並促進濾泡顆粒細胞的增殖 (Lv et al., 2019)。 YAP1刺激麩胺醯胺合成酶的表現,催化麩胺酸轉化為glutamine (麩胺醯胺),進而活化mTOR (Bertero et al., 2016)。因此, YAP1信號路徑和mTOR相互調控, mTOR和Hippo信號路徑都可調節卵巢生長。與mTOR相比,在卵母細胞和卵巢濾泡細胞也表現5'-AMPactivated
protein kinase (AMPK) , AMPK在能量壓力下會被活化,即ATP水平量降低 (AMP/ATP比值升高) (Herzig and Shaw, 2018),AMPK的活化可以被促性腺激素活化的PKA信號所抵消,這限制了AMPK的活性 (Przygrodzka et al., 2021)。 AMPK可以抑制YAP1的活性,AMPK可以直接磷酸化YAP1,破壞YAP1與轉錄因子TEAD之間的交互作用,從而抑制YAP1所引起的基因轉錄 (Mo et al., 2015, Wang et al.,
2015)。Hippo路徑及其下游轉錄效應子YAP1和TAZ是卵巢發育和功能的重要信號傳導路徑 (reviewed by Clark et
al., 2022)。
PTEN不僅為一種腫瘤抑制因子,亦能影響細胞生長的大小與其週期,在鰻魚中已有研究報告,雄性素下調卵巢
PTEN 蛋白 (Huang et al., 2012; Gwo et
al., 2013)。
圖2:mTOR 和 Hippo 通路相互作用並協調細胞數量和生長
(Csibi and Blenis, 2012)。
已證明YAP 經由miR-29下調 PTEN 以促進細胞生長和組織增生
(Csibi and Blenis, 2012)。在神經元細胞中,若PTEN
敲弱時,Hippo 信號路徑中的MOB1 蛋白顯著增加,MOB1 的穩定性受 PTEN-GSK3β 軸的調節(Song et al., 2018)。但在鰻魚中PTEN 和 Hippo 信號路徑如何交互作用未有研究。
生物標誌是預測反應的生物特徵。卵細胞對雄性素的敏感性取決於卵巢狀態(卵徑的大小的分佈)(Huang et al., 2020)。從結果來看,基於表現差異而選擇某些基因作為生物標誌似乎並不理想,假設起始卵巢中某些起始基因表現狀態可能是處理雄性素效果的基礎,這某些微細起始基因表現狀態可能會被放大,這些可能是隨機和波動的,但如果沒有從單一個體追蹤(基因表現起始值與最終值),就不太可能判讀轉錄組所隱藏的訊息。選擇了某些途徑中的一組基因來代表卵巢狀態,起始卵巢狀態(基因型)是影響處理(刺激)如何轉化為外表型的基礎。基於外表型,檢查卵細胞的大小分佈是一個方法,而研究基因表達模式則可以找出基因標誌(Huang et al., 2021a, b)。
已證明起卵巢起始狀態與起始的基因背景和雄性素處理的外表型結果之間存在相關性 (Huang et al., 2020; Huang et al., 2021a)。卵巢轉錄組的結果被以日本鰻基因組支架(genome scaffolds)重新拼裝 (re-mapping),以對(處理前、後)為單位重新分析。某些基因在某對中不存在但在其他對中存在,而存在的基因也會被上調或下調,分析了不同組的基因以進行 KEGG 信號通路富集。我們推測並證明日本鰻魚中存在“表現存在-不存在變異(ePAV)” (Huang et al., 2021b)。將處理後的卵巢組織與起始的進行比較,我們結果顯示某些生化途徑 (bio- pathway)被顯著的(p < 0.05)同時被上調與下調, 這矛盾的結果意味著基因網絡的複雜性,但事實上,魚類有多套的基因體核酸與眾多蛋白質異構物 (isoforms) 可解釋這矛盾的原因 (Huang et al., 報告撰寫中)。無論如何,顯著的代謝活動與卵巢狀態的變化是相對應的,基因表現熱圖(gene expression heatmap)和主成分分析(PCA)的結果顯示外表型和基因表現程度 (基因型)是正相關的 (Huang et al., 2021a)。 鰻魚是一種原始魚類,分化位置位於硬骨魚演化樹的基礎,並是重要的經濟養殖物種。這些結果顯示基因差異表現對雄性素外表型變異的重要性,轉錄組學方法似乎能夠得到多層基因組數據。更細緻的實驗設計,未來需要更多的轉錄組數據來研究這些問題。
Ayllon F, Kjærner-Semb E, Furmanek
T, et al. The vgll3 Locus Controls Age at Maturity in Wild and Domesticated
Atlantic Salmon (Salmo salar L.) Males. PLoS Genet. 2015; 11(11):e1005628. doi:
10.1371/journal.pgen.1005628.
Bae SJ, Luo X. Activation
mechanisms of the Hippo kinase signaling cascade. Biosci Rep. 2018(4);38.
Bertero T, Oldham WM, Cottrill KA,
et al. Vascular stiffness mechanoactivates YAP/TAZ-dependent glutaminolysis to
drive pulmonary hypertension. J Clin Invest. 2016;126(9):3313-3335.
Chen R, Xie R, Meng Z, et al.
STRIPAK integrates upstream signals to initiate the Hippo kinase cascade. Nat
Cell Biol. 2019;21(12):1565-1577.
Christensen KA, Gutierrez AP, Lubieniecki
KP, et al. TEAD3, implicated by association to grilsing in Atlantic salmon.
Aquaculture. 2017 ; 479: 571-578
Clark KL, George JW, Przygrodzka
E, et al. Hippo Signaling in the Ovary: Emerging Roles in Development,
Fertility, and Disease. Endocr Rev. 2022 5;43(6):1074-1096. doi:
10.1210/endrev/bnac013.
Cho YS, Jiang J. Hippo-independent
regulation of Yki/Yap/Taz: a non-canonical view. Front Cell Dev Biol.
2021;9:658481.
Csibi A, Blenis J, et al. Hippo–YAP
and mTOR pathways collaborate to regulate organ size. Nature Cell Biology.
2012; 14:1244–1245.doi: 10.1038/ncb2634.
Devos M, Grosbois J, Demeestere I.
Interaction between PI3K/ AKT and Hippo pathways during in vitro follicular
activation and response to fragmentation and chemotherapy exposure using a
mouse immature ovary model. Biol Reprod. 2020;102(3):717-729.
Dey A, Varelas X, Guan KL. Targeting
the Hippo pathway in cancer, fibrosis, wound healing and regenerative medicine.
Nat Rev Drug Discov. 2020; 19(7):480-494. doi: 10.1038/s41573-020-0070-z.
Dong J, Feldmann G, Huang J, et
al. Elucidation of a universal size-control mechanism in Drosophila and mammals.
Cell. 2007;130(6):1120-1133.
Fan R, Kim NG, Gumbiner BM.
Regulation of Hippo pathway by mitogenic growth factors via phosphoinositide
3-kinase and phosphoinositide-dependent kinase-1. Proc Natl Acad Sci USA.
2013;110(7):2569-2574.
Guo T, Lu Y, Li P, et al. A novel
partner of Scalloped regulates Hippo signaling via antagonizing
Scalloped-Yorkie activity. Cell Res. 2013; 23(10):1201-14. doi:
10.1038/cr.2013.120.
Gwo J-C, Chang C-F, Huang Y-S. “
PTEN function on angiogenesis, ovarian development, and body growth from
Anguilla japonica a primitive vertebrate”, in "PTEN: Structure,
Mechanisms-of-Action, Role in Cell Signaling and Regulation". (2013), Ke Xu ed., Chapter 10, page235-249. ISBN: 978-1-62808-049-0.
Nova Science Publishers, Inc. New York, USA.
Halder G, Johnson RL. Hippo
signaling: growth control and beyond. Development. 2011;138(1):9-22.
Herzig S, Shaw RJ. AMPK: guardian
of metabolism and mitochondrial homeostasis. Nat Rev Mol Cell Biol. 2018; 19(2):121-135.
doi: 10.1038/nrm.2017.95.
Higuchi M, Mekuchi M, Hano T,
Imaizumi H. Trans-omics analyses revealed differences in hormonal and
nutritional status between wild and cultured female Japanese eel (Anguilla
japonica). PLoS One. 2019;14(5): e0209063. DOI: org/10.1371/journal.
pone.0209063.
Hori N, Okada K, Takakura Y, et al.
Vestigial-like family member 3 (VGLL3), a cofactor for TEAD transcription
factors, promotes cancer cell proliferation by activating the Hippo pathway. J
Biol Chem. 2020; 295(26):8798-8807. doi: 10.1074/jbc.RA120.012781.
Hu LL, Su T, Luo RC, et al. Hippo
pathway functions as a downstream effector of AKT signaling to regulate the
activation of primordial follicles in mice. J Cell Physiol.
2019;234(2):1578-1587.
Hua K, Jin J, Zhao J, Song J, et
al. miR-135b, upregulated in breast cancer, promotes cell growth and disrupts
the cell cycle by regulating LATS2. Int J Oncol. 2016 May;48(5):1997-2006. doi:
10.3892/ijo.2016.3405.
Huang Y-S, Chen YM, Liao PC, et al.
Testosterone improves the transition of primary oocytes in artificial
maturation eels (Anguilla japonica) by altering ovarian PTEN expression. Fish
Physiol Biochem. 2012;38(3):777-787. DOI:10.1007/s10695-011-9560-6.
Huang Y-S, Wu X-H, Huang P-S, Chen
G-R. Correlation between the ovarian status and the androgen sensibility in the
cultured Japanese eel, Anguilla japonica. Fish Physiol Biochem. 2020;
46:1063-1074. DOI: 10.1007/ s10695-020-007 7 2-1.
Huang Y-S, Cheng W-C, Lin C-Y.
Androgenic Sensitivities and Ovarian Gene Expression Profiles Prior to
Treatment in Japanese Eel (Anguilla japonica). Mar Biotechnol (NY). 2021a; 23(3):430-444.
doi: 10.1007/ s10126-021-10035-6.
Huang Y-S, Lin C-Y, Cheng W-C.
Investigating the transcriptomic and expression presence-absence variation
exist in Japanese eel (Anguilla japonica), a primitive teleost. Mar Biotechnol
(NY) 2021b. https://doi.org/10.1007/s10126-021-10077-w.
Hsueh AJ, Kawamura K, Cheng Y,
Fauser BC. Intraovarian control of early folliculogenesis. Endocr Rev.
2015;36:1- 24. DOI: 10.1210/er.2014-1020.
Ijiri S, Kayaba T, Takeda N, et al.
Pretreatment reproductive stage and oocyte development induced by salmon
pituitary homogenate in the Japanese eel Anguilla japonica. Fish Sci. 1998;
64(4):531-537.
Ijiri S, Tsukamoto K, Chow S, et
al. Controlled reproduction in the Japanese eel (Anguilla japonica), past and
present. Aquac Europe. 2011;36(2): 13-17.
Ji
SY, Liu XM, Li BT, et al. The polycystic ovary syndromeassociated gene
Yap1 is regulated by gonadotropins and sex steroid hormones in
hyperandrogenism-induced oligo-ovulation in mouse. Mol Hum Reprod.
2017;23(10):698-707.
Jin M, Liu H, He C, et al. Maize
pan-transcriptome provides novel insights into genome complexity and
quantitative trait variation. Scientific Reports, 2016;6:18936. DOI: 10.1038/
srep18936.
Jiang LL, Xie JK, Cui JQ, et al. Promoter
methylation of yes-associated protein (YAP1) gene in polycystic ovary syndrome.
Medicine (Baltimore). 2017; 96(2):e5768. doi: 10.1097/MD.0000000000005768.
Kallen A, Polotsky AJ, Johnson J.
Untapped reserves: controlling primordial follicle growth activation. Trends
Mol Med. 2018;24:319-331.
Kim MK, Jang JW, Bae SC. DNA
binding partners of YAP/TAZ. BMB Rep. 2018;51(3):126-133.
Kim M, Kim M, Lee S, et al.
cAMP/PKA signalling reinforces the LATS-YAP pathway to fully suppress YAP in
response to actin cytoskeletal changes. EMBO J. 2013;32(11):1543-1555.
Kwon H, Kim
J, Jho EH. Role of the Hippo
pathway and mechanisms for controlling cellular localization of YAP/TAZ. FEBS
J. 2021.
Lee SC, Hsiao CD, Wang YS, Lou SW.
Transcriptome response of previtellogenic ovary in Anguilla japonica after
artificial hormone injection. Mar Genomics. 2017; 35:31-34. doi: 10.1016/j.margen.2017.04.002.
Lv X, He C, Huang C, et al. Timely
expression and activation of YAP1 in granulosa cells is essential for ovarian
follicle development. FASEB J. 2019; 33(9):10049-10064.
Lyu Z, Qin N, Tyasi TL, et al. The
Hippo/MST pathway member SAV1 plays a suppressive role in development of the
prehierarchical follicles in hen ovary. PLoS One. 2016;11(8):e0160896.
Ma S, Meng Z, Chen R, Guan KL. The
Hippo Pathway: Biology and Pathophysiology. Annu Rev Biochem. 2019; 88:577-604.
doi: 10.1146/annurev-biochem-013118-111829.
Meng Z, Moroishi T, Guan KL.
Mechanisms of Hippo pathway regulation. Genes Dev. 2016;30(1):1-17.
Mo
JS, Meng Z, Kim YC, et al. Cellular energy stress induces
AMPK-mediated regulation of YAP and the Hippo pathway. Nat Cell Biol.
2015;17(4):500-510.
Okamura A, Horie N, Mikawa N, et
al. Recent advances in artificial production of glass eels for conservation of
anguillid eel populations. Ecol Freshw Fish. 2014;23:95-110.
Pannetier M, Chassot AA,
Chaboissier MC, Pailhoux E. Involvement of FOXL2 and RSPO1 in ovarian
determination, development, and maintenance in mammals. Sex Dev.
2016;10(4):167-184.
Park YY, Sohn BH, Johnson RL, et
al. Yes-associated protein 1 and transcriptional coactivator with PDZ-binding
motif activate the mammalian target of rapamycin complex 1 pathway by
regulating amino acid transporters in hepatocellular carcinoma. Hepatology.
2016;63(1):159-172.
Przygrodzka E, Hou X, Zhang P,
Plewes MR, Franco R, Davis JS. PKA and AMPK Signaling Pathways Differentially
Regulate Luteal Steroidogenesis. Endocrinology. 2021; 162(4):bqab015. doi:
10.1210/endocr/bqab015
Papageorgiou K, Mastora E,
Zikopoulos A. et al. Interplay Between mTOR and Hippo Signaling in the Ovary:
Clinical Choice Guidance Between Different Gonadotropin Preparations for Better
IVF. Front Endocrinol (Lausanne). 2021; 12:702446. doi:
10.3389/fendo.2021.702446. eCollection 2021.
Pisarsk MD, Kuo FT, Bentsi-Barnes
IK, et al. LATS1 phosphorylates forkhead L2 and regulates its transcriptional
activity. Am J Physiol Endocrinol Metab. 2010;299(1):E101 -E109.
Plouffe SW, Lin KC, Moore JL, et
al. The Hippo Pathway Effector Proteins YAP and TAZ Have Both Distinct and
Overlapping Functions in the Cell. J. Biol. Chem. 2018; 293:11230–11240.
Puri P, Little-Ihrig L, Chandran
U, et al. Protein Kinase A: A Master Kinase of Granulosa Cell Differentiation. Sci
Rep. 2016; 6:28132. doi: 10.1038/srep28132.
Reggiani F, Gobbi G, Ciarrocchi A,
et al. YAP and TAZ Are Not Identical Twins. Trends Biochem. Sci. 2021; 46:154–168.
Simon E, Thézé N, Fédou S, et al. Vestigial-like
3 is a novel Ets1 interacting partner and regulates trigeminal nerve formation
and cranial neural crest migration. Biol Open. 2017; 6(10):1528-1540. doi:
10.1242/bio.026153.
Song Z, Han X, Zou H, et al. PTEN-GSK3β-MOB1
axis controls neurite outgrowth in vitro and in vivo. Cell Mol Life Sci. 2018; 75(23):4445-4464.
doi: 10.1007/s00018-018-2890-0.
Straßburger K, Tiebe M, Pinna F,
et al. Insulin/ IGF signaling drives cell proliferation in part via Yorkie/YAP.
Dev Biol. 2012;367(2):187-196.
Suurväli J, Whiteley AR, Zheng Y,
et al. The laboratory domestication of zebrafish: From diverse populations to
inbred substrains. Mol. Biol. Evol. 2020; 37(4):1056–1069. DOI:10.1093/molbev/msz289
Tanaka H, Kagawa H, Ohta H, et al.
The first production of glass eel in captivity: fish reproductive physiology
facilitates great progress in aquaculture. Fish Physiol Biochem.
2003;28:493-497.
Thorstad EB, Økland F, Westerberg
H, et al. Evaluation of surgical implantation of electronic tags in European
eel and effects of different suture materials. Mar Freshw Res. 2013;64:324-331.
Tsoi M, Morin M, Rico C, et al. Lats1
and Lats2 are required for ovarian granulosa cell fate maintenance. FASEB J.
2019; 33(10):10819-10832. doi: 10.1096/fj.201900609R.
Tumaneng K, Russell RC, Guan KL. Organ
size control by Hippo and TOR pathways. Curr Biol. 2012; 22(9):R368-79. doi:
10.1016/j.cub.2012.03.003.
Varelas X. The Hippo pathway
effectors TAZ and YAP in development, homeostasis and disease. Development.
2014; 141(8):1614-26. doi: 10.1242/dev.102376.
Wang W, Xiao ZD, Li X, et al. AMPK modulates Hippo pathway
activity to regulate energy homeostasis. Nat Cell Biol. 2015;17(4):490-499.
Wu S, Huang J, Dong J, Pan D. Hippo
encodes a Ste-20 family protein kinase that restricts cell proliferation and
promotes apoptosis in conjunction with salvador and warts. Cell.
2003;114(4):445-456.
Xin M, Kim Y, Sutherland LB, et
al. Regulation of insulin-like growth factor signaling by Yap governs cardiomyocyte
proliferation and embryonic heart size. Sci Signal. 2011; 4(196):ra70. doi:
10.1126/scisignal.2002278.
Xu W, Zhang M, Li Y, et al. YAP
manipulates proliferation via PTEN/AKT/mTOR-mediated autophagy in lung adenocarcinomas.
Cancer Cell Int. 2021; 21:30. https://doi.org/10.1186/s12935-020-01688-9
Ye H, Li X, Zheng T, et al. The
Hippo Signaling Pathway Regulates Ovarian Function via the Proliferation of
Ovarian Germline Stem Cells. Cell Physiol Biochem. 2017; 41(3):1051-1062. doi: 10.1159/000464113.
Zhang Y, Yan Z, Qin Q, et al.
Transcriptome landscape of human folliculogenesis reveals oocyte and granulosa
cell interactions. Mol Cell. 2018;72:1021-1034. DOI: 10.1016/j.
molcel.2018.10.029.
Zhou Y, Huang T, Cheng AS, et al.
The TEAD family and its oncogenic role in promoting tumorigenesis. Int J Mol
Sci. 2016; 17(1):138. doi: 10.3390/ijms17010138.
Zhu X, Xia X, Dang Y, et al.
Transcriptomic analysis for differentially expressed genes in ovarian follicle
activation in the zebrafish. Front Endocrinol (lausanne). 2018;9:593. DOI:
/10.3389/fendo.2018.00593.
Zhao B, Wei X, Li W, et al.
Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell
contact inhibition and tissue growth control. Genes Dev. 2007;21(21):2747-2761.