Thursday, August 08, 2013

Mammalian PTEN-Long found as in the Japanese eel

Science
Vol. 341 no. 6144 pp. 399-402
DOI: 10.1126/science.1234907
  • Report

A Secreted PTEN Phosphatase That Enters Cells to Alter Signaling and Survival

Abstract
Phosphatase and tensin homolog on chromosome ten (PTEN) is a tumor suppressor and an antagonist of the phosphoinositide-3 kinase (PI3K) pathway. We identified a 576–amino acid translational variant of PTEN, termed PTEN-Long, that arises from an alternative translation start site 519 base pairs upstream of the ATG initiation sequence, adding 173 N-terminal amino acids to the normal PTEN open reading frame. PTEN-Long is a membrane-permeable lipid phosphatase that is secreted from cells and can enter other cells. As an exogenous agent, PTEN-Long antagonized PI3K signaling and induced tumor cell death in vitro and in vivo. By providing a means to restore a functional tumor-suppressor protein to tumor cells, PTEN-Long may have therapeutic uses. 

Editor's summary 

PTEN Variations, the product of the tumor suppressor gene phosphate and tensin homolog on chromosome ten (PTEN) is a lipid and protein phosphatase that regulates important cellular processes, including growth, survival, and metabolism (see the Perspective by Leslie and Brunton). Though PTEN is best known for effects on the phosphatidylnositol 3-kinase (PI3K) signaling pathway, the PTEN protein is also found in the nucleus. Bassi et al. (p. 395) found that PTEN's presence in the nucleus was regulated in response to covalent modification of the protein by SUMOylation and phosphorylation. Cells lacking nuclear PTEN showed increased sensitivity to DNA damage and underwent cell death if the PI3K pathway was also inhibited. Hopkins et al. (p. 399, published online 6 June) discovered an alternative translation start site in human PTEN messenger RNA that allowed expression of a protein, PTEN-Long, with about 170 extra amino acids. The unusual enzyme was released from cells and then taken up into other cells. In a mouse tumor model, uptake of the enzyme inhibited the PI3K pathway and inhibited tumor growth. 

No comments: